分享到:
计算机网络 最近更新
讨论未来电商发展趋势论文提纲
浅谈自媒体对现代生活的影响
论文范文:网络发展对青少年心理发展的影响
论我国电子商务应用中的支付问题
电子商务模式研究
中小型企业客户关系管理系统的开发与应用
中石油浙江销售分公司信息管理系统设计
图书馆管理系统分析与设计
物流师职业资格认证报名管理系统
销售管理系统的开发与设计
酒店客房管理系统
财务管理系统的实现
餐饮管理系统设计与实现
社区卫生服务管理系统
汽车营销企业的客户关系管理系统
明道管理咨询有限公司客户关系管理系统设计与开发
企业订单管理系统开发
基于WEB的CRM信息系统的开发与研究
高校科研工作量统计系统的开发与设计
基于Struts的连锁店管理系统
基于动态BP神经网络的预测方法及其应用
摘  要 人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。
    关键字 神经网络,BP模型,预测
 
1 引言
    在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。
2  BP神经网络模型
    BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

图1 BP神经网络结构
2.1 基本算法
    BP算法主要包含4步,分为向前传播和向后传播两个阶段:
    1)向前传播阶段
    (1)从样本集中取一个样本(Xp,Yp),将Xp输入网络;
    (2)计算相应的实际输出Op
    在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时的执行过程。
    2)向后传播阶段
    (1)计算实际输出Op与相应的理想输出Yp的差;
    (2)按极小化误差的方式调整权矩阵。
    这两个阶段的工作受到精度要求的控制,在这里取 作为网络关于第p个样本的误差测度,而将网络关于整个样本集的误差测度定义为 。图2是基本BP算法的流程图。

图2 BP基本算法流程
2.2  动态BP神经网络预测算法
    在经典的BP算法以及其他的训练算法中都有很多变量,这些训练算法可以确定一个ANN结构,它们只训练固定结构的ANN权值(包括联接权值和结点转换函数)。在自动设计ANN结构方面,也已有较多的尝试,比如构造性算法和剪枝算法。前一种是先随机化网络,然后在训练过程中有必要地增加新的层和结点;而剪枝法则正好相反。文献[2]中提出了演化神经网络的理念,并把EP算法与BP进行了组合演化;也有很多学者把遗传算法和BP进行结合,但这些算法都以时间复杂度以及空间复杂度的增加为代价。根据Kolmogorov定理,对于任意给定的L2型连续函数f: [ 0, 1 ]n Rm , f可以精确地用一个三层前向神经网络来实现,因而可以只考虑演化网络的权值和结点数而不影响演化结果。基于此,在BP原有算法的基础上,增加结点数演化因子,然后记录每层因子各异时演化出的结构,最后选取最优的因子及其网络结构,这样就可以避免由于增加或剪枝得到的局部最优。根据实验得知,不同的预测精度也影响网络层神经元的结点数,所以可根据要求动态地建立预测系统。具体步骤如下:
    (1)将输入向量和目标向量进行归一化处理。
    (2)读取输入向量、目标向量,记录输入维数m、输出层结点数n。
    (3)当训练集确定之后,输入层结点数和输出层结点数随之而确定,首先遇到的一个十分重要而又困难的问题是如何优化隐层结点数和隐层数。实验表明,如果隐层结点数过少,网络不能具有必要的学习能力和信息处理能力。反之,若过多,不仅会大大增加网络结构的复杂性(这一点对硬件实现的网络尤其重要),网络在学习过程中更易陷入局部极小点,而且会使网络的学习速度变得很慢。隐层结点数的选择问题一直受到神经网络研究工作者的高度重视。Gorman指出隐层结点数s与模式数N的关系是:s=log2N;Kolmogorov定理表明,隐层结点数s=2n+1(n为输入层结点数);而根据文献[7]:s=sqrt(0.43mn+0.12nn+2.54m+0.77n+0.35)+0.51[7]
    (4)设置结点数演化因子a。为了快速建立网络,可以对其向量初始化,
随机推荐
网络、网络语言与中国语言文字应用研究
利用PowerBuilder开发WEB应用
基于P2P的IP电话模型
智能网络存储方案
用VB构键Internet的应用
互联网时代的WebGIS开发
浅析基于软交换的下一代网络存储
浙江广播电视集团网络安全解决方案
网络化趋势与图书馆发展观
基于网络的轨道交通工程支付管理系统研究与应用

设为首页 | 关于我们 | 广告联系 | 友情链接 | 版权申明

Copyright 2009-2014 All Right Reserved [粤ICP备05100058号-11]