分享到:
数学 最近更新
实践美学:数学教学的另一种视角
重力教学论文:八年级物理重力教学方法浅论
论文:中考物理力学有效复习策略
论文:结合中考物理试题特征浅谈力学复习策略
中学物理教学资源挖掘和利用研究的实践与探索
初中数学分层教学论文:数学课堂中实施分层教学的做法
初中物理教学资源的挖掘和利用
中学物理教学过程中激发学生的学习兴趣
中学物理教学激发和培养学习兴趣
论现代农业示范区的规范建设与综合生产能力提升
数学教学过程中要培养学生的情感态度
帮助学生获得数学活动经验浅探
学生几何直观能力的培养
数学教学中的“思”与“问
基于变频器的单相电动机调速装置
毕业论文_暖贴行业的新兴与发展
汞离子对豌豆根尖细胞染色体行为的影响
初中数学教学中如何指导学生“会学”
美国高中物理教材习题设置的启示
议物理教学中科学素质的培养
希腊几何学的社会文化根源

【内容提要】本文从古希腊独特的社会文化形态作为切入点,探索求解了数学思想史上著名的“克莱因问题”,从而破解了希腊证明几何学的成因之谜。古希腊社会在从氏族社会向民族社会转轨变形的过程中,爆发了一场绵延数世纪的思想启蒙运动。希腊人从宗教神学中解放了出来,开始了对世界的理性思考,他们为了解决社会秩序的重组问题,提出了以法治国的政治主张。从此希腊社会走上了法制的轨道。在古典的民主政治和商品经济形成的同时,古希腊民族也孕育出了一种独特的文化形态——古典的理性文化或科学文化。希腊几何学正是在这种以法律文化为核心、以语言文化为生长点的理性文化中诞生、形成和发展起来的。希腊哲学文化则是使公理几何学最终定型的关键因素。
【关键词】希腊几何学/法律文化/语言文化/哲学文化


【正文】
希腊几何学是数学史上一颗璀璨的明珠。她作为一种科学研究的范式,直接影响过西方数学,乃至整个科学的发展。著名数学史学家克莱因在《古今数学思想》一书中曾经指出过:“希腊人在文明史上首屈一指,在数学史上至高无上。”并且他提出了数学思想史上非常重要的一个问题,这就是“文明史上的重大问题之一,是探讨何以古希腊人有这样的才气和创造性。”[1]本文试图对“克莱因问题”进行探索求解,以破解长期困扰着数学史研究中的希腊论证几何学的成因之谜。反观“中国古代为什么没有产生证明几何学”也就容易找到答案了。
  一
古希腊是一个移民的社会,从开始就没有像东方民族所具有的以血缘关系为纽带的宗法式的社会结构。这种以地缘关系为基础的社会共同体,加上希腊所处的独特地理位置,为希腊古典的民主政治和商品经济——希腊城邦制的出现提供了必要的条件。在此基础上,古希腊社会孕育出了一种独特的文化形态——古典的理性文化或科学文化。希腊几何学正是在这种理性文化中诞生、形成和发展起来的。
古希腊是法学的发源地,法律文化得到了充分的发展。公元前11世纪——9世纪是希腊的荷马时代,也就是史称的“英雄时代”。这一时代是希腊社会发生重大变革的时代,首先表现在希腊人自我意识的觉醒。希腊人开始从宗教神学中解放出来,以“人为一切事物的尺度”来审视世间的一切。荷马时代实质上是希腊历史上的一次思想启蒙运动,是古希腊文明的开端。从此,希腊民族完成了从神秘主义文化向理性主义文化的转变,开创了以法律文化为轴心的科学文化的历史进程。《荷马史法》作为调整社会关系、重建社会秩序的法典,确立了一种政治民主制:其中包括议事会、人民大会和首长选举等内容。因此可以说,希腊文化的源头或逻辑起点是《法典》,由此铸成希腊民族的“法律”意识和“法制”观念。尔后的德拉古立法,直到公元前594年梭伦立法,最终确立起古希腊的法律体系,推动了希腊民族法律文化的繁荣发达。希腊人唯“法”是从,遇事讲“理”,依法办事,他们以“法”的眼光审视社会、审查自然、审理知识,创造出了独具特色的古希腊文明。
希腊几何学的证明思想导源于法律文化,论证几何发凡于梭伦立法时代。希腊的法学称“正义学”。人们在立法的过程中首先遇到的是:“什么是正义?为什么有罪?”等法理问题。其中包括“公理、公设、前提、条件”等法学的基础问题,以及审判过程中的“事实、理由、证据、推理”等法学的逻辑问题。要从根本上弄清楚这些法理问题,人们就必须在思想上进行一种“分析”的理性思考。立法者告诫人们:法律是规则的、普遍的,并对一切人都是相同的;法律所需要的是公平,诚实与有用;他们欲求为一普遍的规律对于一切人都是一样,因为种种理由所有的人都要服从法律。
梭伦当权后,所做的第一件事,同时也是最大的一件事,就是对“法律”制度的改革。他认为,无法和内乱是人类最大的灾难,而法律和秩序则是人类最大的幸福。梭伦改革的目标是企图建立一个为新的、旧的势力都能接受的民主和谐的政治,以保证社会各种势力的平衡和政治稳定。为此,梭伦建立了新的法律,史称“梭伦”立法。其中最大的举措是加强了公民大会的权力,凡年满20岁的雅典公民均可参加,会议定期举行。400人组成议会。他创建了宏大的人民法院依利艾阿,总人数达6000人,任何人都可以谴责执政官的无理决定。
公元前6世纪雅典陪审法院的建立,这不仅标志着希腊民主政治的进一步完善,而且更为重要的是促进了整个希腊学术思想的繁荣与发达。古希腊的法律文化发展到一个新的阶段。首先是推动了自然法的理论研究。强调其法律存在的客观性和同一性,认为不同国家和不同时代的法律有其共同的根源和价值目标,这就是人的本性和规律,就是理性,就是正义所综合的一系列价值目标,如自由、平等、秩序等。因此,自然法学者特别重视探索法律的终极目标和客观基础。其二,法根源于人的永恒不变的本性:社会性和理性。真正的法律或自然法应与之相符,特别是与理性相符合,或者说法是人的理性所发现的人的规律和行为准则,是“理性之光”,它能照亮人前进的道路。其三,法的功能和目的在于实现正义。所谓正义,就是基于公共幸福的合理安排,就是人在社会中“得其所哉”,即享受人应该享受的权力和平等地承担义务,法律面前人人平等。其四,法律作为一种社会的行为准则能使人们辨是非、知善恶,自然法就是人们不断追求的终极性的价值目标。
生活在梭伦立法时代的泰勒斯,与梭伦同为希腊“七贤”里的人物。他受希腊法律文化(社会立法)的深刻影响,尤其是受自然法理论研究的启发,创造性地运用法学的思想和方法为知识“立法”。泰勒斯对经验几何学知识进行了卓有成效的理性研究。作为数学思想家的泰勒斯,他突破了以往几何知识仅仅“是什么”的认识水平,将几何知识提升到了“为什么”的认识层次。由此开几何命题的证明之先河。泰勒斯在进行几何学研究的过程中,不仅发现了“任何圆周都要被其直径平分;等腰三角形的两底角相等;两直线相交时,对顶角相等;若已知三角形的一边和两邻角,则此三角形完全确定;半圆周角是直角”等五个几何命题,而且还从理论上证明了这些命题。[2]
毕达哥拉斯继承和发扬了泰勒斯的证明几何学,并且将数学概念抽象化,进一步推动了演绎数学的发展。毕达哥达斯的“数是万物的本质,宇宙的组织在其规定中通常是数及其关系的和谐体系”的数理宇宙观对古希腊的数学思想产生了极其深刻的影响。毕达哥拉斯学派因发现“无理数”(不可公度的量)而引起的第一次数学危机,充分证明了几何证明的必要性,在一定程度上进一步推动了人们对几何命题的理论证明。
贯穿于希腊古典民主政治、商品经济和理性文化之中的是希腊的自由精神,这是在世界上其他任何民族都没有出现的。这种自由精神最终演化为学术思想上的自由探索精神。正是这种“百家争鸣”的希腊研究之风,才迎来了“百花齐放”的希腊科学之春。
  二
独具特色的希腊语言文化也是希腊理性主义起源的一个重要诱发因素。最早对语法现象进行研究的是希腊人。公元前10世纪前后,希腊人在闪语字母的基础上,经过一番改造,首次创造了音位文字字母,并且还把闪语文字自右向左的书写规则改为自左向右。到公元前775年左右,希腊人把他们用过的各种象形文字书写系统改换成腓尼基人的拼音字母,建立起了希腊语言文字系统。在此基础上理论家们开始了为语言“立法”——语法的研究。赫拉克利特指出过:“如果要想理智地说话,那就必须用这个人人共有的东西武装起来,就像城邦必须用法律武装起来一样,而且要武装得更牢固。”[3]
希腊哲学、法学、逻辑学与希腊语言文字的关系密切。哲学中的许多派别的理论观点时常牵涉到对语言的认识。法学中的论战、法律条文的制定,也往往涉及到对语言的修辞和准确的表达。逻辑学与语言学,特别是与语法学的关系更是密切相关。语言是思维的物质外壳,是思维的工具。思维要通过语言来表达,它是否合乎逻辑就成为语言表达中的一个重要问题。语言家要利用逻辑学的术语和方法来研究语言中的结构意义;另一方面,研究逻辑的也往往牵涉到语言的问题。
希腊的语言结构复杂。希腊语言中的动词更是变化多端,它有人称、时、态、体、式的变化。特别是由系动词附图变来的(附图)一词,具有多种的语言意义,表现出多种的语法关系。正是这种奇特的语言现象引起了理论家们的关注,成为“智者”们思考和研究的对象。
当希腊语中使用“附图”一词时,就有多种不同的意义。亚里士多德曾经指出:“当动词‘是’被用来作为句子中的第三种因素时,会产生两种肯定命题与否定命题。如在句子中‘人是公正的’中,‘是’这个词被用作第三种因素,无论你称它是动词,还是名词。”[4]系动词“附图”在希腊语中不同凡响,它是人们进行言语对话,进行思想交流,进行陈述和判断不可缺少的词语。同时,在人们的语言表达中最容易产生歧义的也是这个中词。在“他在这儿”这个句子中,它所表示的是一种物理位置;在“天使是白色的”这个句子中,它表示天使的一种与位置或物理存在无关的属性;在“那个人正在跑”这个句子中,这个词所表示的是动词的时态;在“二加二等于四”这个句子中,它的形式被用于表示数字上的相等;在“人是两足的能思维的哺乳动物”这个句子中,它的形式被用来断言两组之间的等同。
在形式逻辑的主宾式语句中“附图”是一个典型的多义词。它可以表示“=”(等于)、“∈”(隶属)和“附图”(包含)三种关系。例如:(1)“欧几里得是《几何原本》的作者”与“《几何原本》的作者是欧几里得”,这里的两个“是”具有可逆性,他们是一种等价的关系(=),可解释成关系“=”(等于)。(2)“欧几里得是古希腊的数学家”中的“是”为“∈”(隶属)。即个体和集合之间的隶属关系、层次关系,因而不可逆。可解释成关系“∈”(隶属)。(3)“数学家是科学家”中的“是”被解释成关系“附图”(包含),即集合与集合之间的包含关系,一般来说也是不可逆的。科学家不一定是数学家。
正是由于希腊语言中的这种多义词,也往往容易产生语言思维中的歧义性,由此引发了语言文化史上的“希腊景观”——观念的战争。正如科学哲学家被波普尔所指出的那样“观念的战争是希腊人的发明,它是曾经作出的最重要的发明之一。实际上用语词战争代替刀剑战争的可能性,还是我们文明的基础。特别是我们文明的一切立法和议会机构的基础。”[5]
由此可见,当我们探索追踪古希腊论证几何学的成因的时候,我们不能不考察独特的古希腊语言文化方面的根源。

随机推荐
中学数学教学难点的成因及对策
关于初中数学教材使用中的思考
“案例分析”应重在分析——关于搞好“案例分析”的若干想法
如何使数学教学成为数学活动的教学
数学小论文-费马定理
注重信息反馈,优化数学教学过程
小学数学教学中新课的导入
师生互动在中学数学教育系统的地位和作用
“算经十书”数学思想简论
“问题解决”和中学数学课程

设为首页 | 关于我们 | 广告联系 | 友情链接 | 版权申明

Copyright 2009-2014 All Right Reserved [粤ICP备05100058号-11]