分享到:
物理学 最近更新
实践美学:数学教学的另一种视角
重力教学论文:八年级物理重力教学方法浅论
论文:中考物理力学有效复习策略
论文:结合中考物理试题特征浅谈力学复习策略
中学物理教学资源挖掘和利用研究的实践与探索
初中数学分层教学论文:数学课堂中实施分层教学的做法
初中物理教学资源的挖掘和利用
中学物理教学过程中激发学生的学习兴趣
中学物理教学激发和培养学习兴趣
论现代农业示范区的规范建设与综合生产能力提升
数学教学过程中要培养学生的情感态度
帮助学生获得数学活动经验浅探
学生几何直观能力的培养
数学教学中的“思”与“问
基于变频器的单相电动机调速装置
毕业论文_暖贴行业的新兴与发展
汞离子对豌豆根尖细胞染色体行为的影响
初中数学教学中如何指导学生“会学”
美国高中物理教材习题设置的启示
议物理教学中科学素质的培养
基于表面等离子体效应的光开关研究现状和进展

     作者:陈 聪 王 沛 苑光辉 王小蕾 闵长俊 邓 燕 鲁拥华 明 海
  摘 要目前表面等离子体(surface plasmons, SPs)效应在光传感、光存储及生物光子学等领域的应用前景受到了广泛关注,通过计算模拟或实验基于SPs效应的光开关也层出不穷.文章较为系统地介绍了各种基于SPs效应的光开关原理和优缺点,对SPs全光开关做了重点介绍.
  关键词表面等离子体亚波长光学, 光开关, 光双稳, 综述
 
  AbstractGreat attention is being paid to surface plasmons (SPs) because of their potential applications in sensors, data storage and bio-photonics. Recently, more and more optical switches based on surface plasmon effects have been demonstrated either by simulation or experimentally. This article describes the principles, advantages and disadvantages of various types of optical switches based on SPs, in particular the all-optical switches.
  Keywordssurface plasmons, subwavelength optics, optical switch, optical bistability, overview

  1 引言
  
  表面等离子体是局域在金属表面、沿表面传播的一种电磁波,通过构造金属表面的结构,可以在纳米尺度下控制表面等离子体的激发和传播——特别是它与光的相互耦合[1].这种可调控性在新型光子学,尤其是亚波长光子器件的设计应用方面极具潜力,目前如何有效进行表面等离子体的动态调控是重要的研究方向,最主要的就是实现基于表面等离子体效应的光开关(下面简称SPs光开关).SPs光开关是在开关结构中激发SPs,通过改变外部条件影响SPs的激发或传输特性,进而达到开关效果的一种新型光开关.随着制作工艺的不断成熟,SPs光开关利用新的物理机理和物理结构,可在小于衍射极限尺度内实现光的控制,在纳米尺度上实现光子器件的集成[2],因此SPs光开关在速度和尺寸及驱动功率方面具有独特优势.目前报道的SPs光开关类型主要有热光开光、电光开光及全光开光等.
  
  2 SPs热光开关
  
   一般而言,热光开关的速度相对较慢,主要有以下两种SPs热光开关.
  2.1 MZ型
  这种光开关将金膜夹在BCB(苯并环丁烯)介质层中[3],通过电极加热,调控SPs-M-Z结构中一臂的介电常数,影响在两路传播的SPs在节点处的耦合条件,最终控制信号输出情况,如图1所示.该开关消光比可达35dB,插入损耗11dB,适用于1.51—1.62μm波段,由于是利用热光效应,开关速度较慢,为0.7ms.根据以上特点,该光开关可用作数字光开关,作为宽带宽光子网络中的空间可分离开关[4].虽然这种MZ型SPs光开关并没有在设计思路上有重大突破,但它在传统开关的结构中引入SPs,利用SPs的相干相消、相干相长达到开关目的,这种开关有利于开关体积的小型化.
  
   图1 上图(a)为马赫-曾德干涉调制(MZIM)结构,(b)为定向耦合开关(DCS)结构,(c)为光学显微镜下的结构,(d)为电极接触点的放大图像;下图为输出强度随所加电压大小的变化曲线[3]
  
  2.2 半导体孔阵列型
  该开关的主要结构为二维亚波长Si光栅[5],厚度100μm,正方形小孔边长70μm,周期300μm,适用于THz波段.如图2上图所示,由于入射波长大于小孔边长,故入射波在Si光栅表面激发SPs,SPs隧穿到光栅另一表面,然后褪耦合出射.当改变Si光栅的温度,调节半导体内的自由载流子浓度,进而改变Si的介电常数,影响SPs激发程度,最终控制透射量.下图为相同尺寸的Si光栅和Au光栅从室温到12K变化时,在THz波段(250μm—750μm)的透射率变化情况.由于金属Au的自由载流子浓度随温度变化不大,因而其透过率基本不变;而对于Si光栅,同一波长,不同温度,其透过率变化十分明显,尤其在THz波段.
  
  图2 上图为半导体孔阵列开关工作原理示意图; 下图(a)为Si光栅,(b)为Au光栅在不同温度下THz波段的透射率变化[5]
  
  这种半导体材料做成的SPs热光开关必须要求适用波段的波长大于光栅小孔尺寸,且基于热激发载流子,开关时间取决于半导体材料对温度的响应和温度变化的快慢,速度受到很大限制,因此该开关可用于温度传感装置,在一定范围内实现对温度的精确探测.同时,可以预见如果该开关是基于光生载流子,其速度将大大提高,这对制作类似的全光开关有很好的指导意义.
  
  3 SPs电光开关
  
  目前报道的SPs电光开关主要是MZ型,具体结构如图3所示[6].金属层上下表面覆盖E-O介质(BST),金属厚度d=0.8λ,E-O介质厚度d1=d3=8λ/15,开关长度L=2000λ.在金属层上下表面存在以金属层为中心的对称和反对称两个传播模式,当不加偏压时,这两个模式在金属层上表面相干相长,而下表面相干相消,故SPs从上通道输出;当加上偏压(V=59kV/cm)时,由于电场对对称和反对称SPs模式的传播常数影响不同,使之在上表面相消,而下表面相长,从而将SPs切换到下表面输出.这种开关具有很高的消光比27dB,开关速度主要取决于E-O介质对电场的响应时间;缺点是开关长度受SPs横向传播距离限制,且高消光比和低驱动功率不能同时满足.根据其开关速度和结构特点,该开关不仅可以作为一个多通道开关,而且能方便地集成在基于SPs效应的光子回路中,同时能实现光隧穿、光开关和光调制等功能.
  
  4 SPs全光开关
  
   全光开关在开关速度、信息处理等方面具有较大的优势,在SPs纳米光子器件及其集成回路中,如何做出响应快、损耗小、结构简单的全光开关也日益重要.
  4.1 光栅耦合型
  2004年,A.V.Krasavin等人提出了利用光栅激发和褪耦合结构的SPs全光开关[7].开关结构如图4所示,信号光入射至左边的耦合光栅处,激发形成SPs,SPs沿Au/Si介面传输,在这段传输路径中加入一段L=2.5μm的Ga薄膜,当没有控制光照射时,Ga为固态α-Ga,表现为非金属性质,SPs不能有效传输而被中断;当有入射光照射时,Ga的上表层熔化为液态m-Ga,SPs能有效传输至右端褪耦合光栅,转化为信号光输出;需要指出的是,这个仅仅是理论上的模型,数值计算表明,该开关调制深度为80%,驱动功率约为10pJ,开关开启时间由界面处厚度为d的Ga的熔化时间决定,大概ps量级,关闭时间由液态Ga的凝固时间决定,约为ns至μs量级.虽然该开关相对热光开关速度较快,但由于需制作光栅,成本较高,实验上也尚未实现,实际应用受到很大限制. 
  
  4.2 棱镜激发型
  Araz Yacoubian于1993年从理论上提出了棱镜结构的SPs调制结构[8],在SF1棱镜底部分别镀1μm的PMMA、20nm的Ag膜和半无限厚的PMMA-DR1,信号光以一定角度入射时,可形成长程表面等离子体共振,此时反射极弱;当用抽运光入射到PMMA-DR1,改变PMMA-DR1的折射率-0.0012,则可移动该共振角约0.05度,使反射率从0左右跃至0.7左右.该结构在实际制作上有两个难点:长程表面SPs波的激发对第一层PMMA的厚度很敏感,很难精确控制在1μm;其次多层膜结构中膜表面的粗糙度对SPs共振影响很大[9].
  2004年,A.V.Krasavin在实验上实现了这种基于棱镜结构的Ga调制SPs光开关[10].如图5所示,在棱镜底部镀一层厚度为185nm的MgF2,再镀一层Ga.在上述光栅耦合型开关中,Ga作用于SPs的传输过程,而这个棱镜激发型SPs开光中Ga作用于SPs的激发环节.如图5(b),当没有控制光照射,Ga处于固态α-Ga,780nm信号光在MgF2/Ga界面上形成SPs,因此反射减弱 ;如图5(c),当1064nm的控制光入射时,在MgF/Ga界面处有厚度为d的Ga处于液态m-Ga,信号光不能有效形成SPs,反射增强.该开关的开启时间为4ps,关闭时间为20ns.这种类型的开关能在可见和近红外波段有效调制SPs信号,带宽可达几十兆赫兹;但由于结构中涉及棱镜,开关大小受限,难以集成.
  
  4.3 二维孔阵列型
  半导体孔阵列结构:该开关与上述半导体SPs热光开关极为相似[11],是C.Janke和J.Gómez Rivas等人在半导体SPs热光开关[2]基础上,利用InSb材料的光生载流子效应,以周期性方孔阵列的InSb二维光栅为结构实现的.光栅厚度h=130μm,小孔边长d=65μm,小孔周期D=300μm.抽运光是中心波长为780nm的Ti宝石激光,脉冲宽度为100fs,信号光为300—700μm的THz波.当抽运光照射到InSb二维光栅上时,通过光生载流子效应调节半导体材料的介电常数,调控其光栅结构的THz-SPs透射增强效应.开关速度主要取决于载流子浓度对抽运光的响应,约50ns,利用载流子寿命更短的材料有望进一步提高开关速度.该类SPs光开关结构相对简单,速度较快,容易集成,有望实现基于SPs效应的各种超快调制器件.

随机推荐
库仑定律的发现过程与启示
基于表面等离子体效应的光开关研究现状和进展
浅析初中物理自主型课堂教学模式学习策略与学法指导
重力教学论文:八年级物理重力教学方法浅论
跨世纪物理学的几个活跃领域和发展趋势
测定大气颗粒物中金属元素的样品前处理方法比较
演示型CAI在中学物理教学中的应用研究
解释百慕大三角 龙三角等诸多之谜
中学物理教学资源挖掘和利用研究的实践与探索
生物安全的现状与对策

设为首页 | 关于我们 | 广告联系 | 友情链接 | 版权申明

Copyright 2009-2014 All Right Reserved [粤ICP备05100058号-11]