分享到:
统计学 最近更新
实践美学:数学教学的另一种视角
重力教学论文:八年级物理重力教学方法浅论
论文:中考物理力学有效复习策略
论文:结合中考物理试题特征浅谈力学复习策略
中学物理教学资源挖掘和利用研究的实践与探索
初中数学分层教学论文:数学课堂中实施分层教学的做法
初中物理教学资源的挖掘和利用
中学物理教学过程中激发学生的学习兴趣
中学物理教学激发和培养学习兴趣
论现代农业示范区的规范建设与综合生产能力提升
数学教学过程中要培养学生的情感态度
帮助学生获得数学活动经验浅探
学生几何直观能力的培养
数学教学中的“思”与“问
基于变频器的单相电动机调速装置
毕业论文_暖贴行业的新兴与发展
汞离子对豌豆根尖细胞染色体行为的影响
初中数学教学中如何指导学生“会学”
美国高中物理教材习题设置的启示
议物理教学中科学素质的培养
基于蒙特卡洛方法的高斯混合采样粒子滤波算法研究
摘  要  本文提出了一种标准粒子滤波器的改进算法——高斯混合采样粒子滤波算法(GMSPPF)。仿真结果表明,新算法在大幅降低计算复杂度的前提下,具有比标准粒子滤波算法(SIR-PPF)更好估计性能.
    关键词  卡尔曼滤波;粒子滤波;序列蒙特卡洛;贝叶斯滤波;高斯混合采样
 
1  引言
    贝叶斯方法为动态系统的估计问题提供了一类严谨的解决框架。它利用已知的信息建立系统的概率密度函数可以得到对系统状态估计的最优解。对于线性高斯的估计问题,期望的概率密度函数仍是高斯分布,它的分布特性可用均值和方差来描述。卡尔曼滤波器很好地解决了这类估计问题[1]。对于非线性系统的估计问题,最经典并得到广泛应用的方法以扩展的卡尔曼滤波为代表,这类方法需要对模型进行线性化,同时要求期望的概率密度函数满足高斯分布,然而在对实际系统建模时,模型往往是非线性非高斯的。此时,最优估计很难实现。
    粒子(particle)滤波器——序列重要性采样粒子滤波器,是一种适用于强非线性、无高斯约束的基于模拟的统计滤波器[2]。它利用一定数量的粒子来表示随机变量的后验概率分布,从而可以近似得到任意函数的数学期望,并且能应用于任意非线性随机系统。本文介绍一种估计性能更好的粒子滤波算法——高斯混合采样粒子滤波器(GMSPPF),相比通常意义上的粒子滤波算法(SIR-PF),GMSPPF粒子滤波器具有更小的系统状态估计的均方误差和均值。
2  贝叶斯滤波问题
    贝叶斯滤波用概率统计的方法从已观察到的数据中获得动态状态空间(DSS)模型参数。在DSS模型中,包含状态和观测两个方程[3][4]。其中状态转移方程(State Equation)通常写作
               (1)
这里,是已知,且是白噪声独立的随机序列,而且分布是已知的。观测方程表达式写为
                 (2)
这里:是白噪声序列,独立且分布已知。并且满足
    图1描述了DSS模型中状态转移和似然函数的关系。假设初始时刻系统的状态分布已知,k时刻的已知信息序列表示
图1  动态状态空间模型(DSSM)
    这样,贝叶斯估计的问题理解为:利用观测到的信息Yk,求解系统状态的概率分布。若系统状态的变化是隐马尔柯夫过程,即当前系统的状态信息只与上一个时刻的状态有关,可以通过预测和更新的途径求解。
      (3)
这里:
     (4)
    假设xk,wk是相互独立的随机变量,满足
。于是,参考(1)式可以把(4)式写为
     (5)
    其中,是采样函数。当是已知时,xk可以通过确定性方程(1)得到。 依据贝叶斯准则,系统状态估计量
     (6)
    其中,
       (7)
    另外,在给定 xk,vk,分布的条件下, yk的条件概率依据测量方程(2)可以表示为如下形式
      (8)
    由(6)式可以看出,后验概率密度包含3个部分。先验概率似然函数和证据。如何获得这三项的近似是贝叶斯滤波的核心问题。更新方程(5)中观测值 用来对 的先验预测值修正,从而获得状态 的后验概率。方程(3)和(6)的递归关系构成了求解贝叶斯估计问题的两个步骤:预测与更新。如果(1),(2)中的hk,fk是线性的,且噪声wk,vk满足高斯白噪声,可以把贝叶斯估计问题简化为卡尔曼分析解。但这类问题仅仅是实际问题中很小的一个部分。对于更多的问题,很难得到分析解。只有通过对问题的近似线性处理(扩展卡尔曼滤波)或其它途径(蒙特卡洛方法)实现非线性、非高斯问题的解。依据后面分析问题需要,这里重点对蒙特卡洛方法积分进行说明。
3  蒙特卡洛方法
    在过去的二十多年,蒙特卡洛方法得到了很大的发展。其优点就是用系列满足条件的采样点及其权重来表示后验概率密度。蒙特卡洛方法采用统计抽样和估计对数学问题进行求解。按照其用途,可以把蒙特卡洛方法分为三类[5]:蒙特卡洛抽样、计算、优化。其中,蒙特卡洛抽样是寻找有效的、方差很小的、用于估计的抽样方法。蒙特卡洛计算则是设计产生满足特定要求随机数的随机发生器的问题。而蒙特卡洛优化是采用蒙特卡洛思想对实际中的非凸非差分函数优化求解。对于,可以由概率空间p(x)中抽取N个样本,用近似值作为的解。大数定理证明:收敛于,并且满足条件。这里,的方差。不同于确定性的数字计算,蒙特卡洛近似的一个重要特点就是估计的精度独立于状态空间的维数。而且,积分估计的方差与采样点的个数成反比。显然,蒙特卡洛近似方法的关键点有两个:首先如何由一个样本空间中抽取N个采样点,用来表征后验概率密度。其次就是计算
    重要性抽样(Important Sampling)解决了如何借助于已知分布来对实现有效采样的问题,由Marshall 1965年提出。当数据空间十分巨大时,重要性抽样只对其中“重要”区域进行采样,节省了计算量。对于高维采样空间模型,如统计物理学、贝叶斯统计量,这一点尤为重要。重要性抽样的中心思想是选择一个覆盖真实分布p(x)的建议分布q(x)[8]。这样,
      (9)
对q(x)作蒙特卡洛抽样,假设粒子数目为N,有
       (10)
其中,称为重要性权重,再作归一处理,
    (11)
是归一化权重。为了减小估计的方差,选择的建议性分布q(x)与p(x)尽可能匹配。通常,建议分布q(x)需要一个长的拖尾,这样可以解决区间之外的干扰。确切的说,匹配的q(x)必须与p(x)f(x)成正比[9]。当q(x)与p(x)不匹配时,w(x(i))是不均匀分布的,在整个递归迭代的过程中,存在大量的权值极小的样本,而这些样本对估计的贡献很小。事实上,权值较大的少数样本决定蒙特卡洛采样的估计精度。大量时间损耗在这些“无关紧要”的粒子计算上,即所谓的粒子退化现象(Degeneracy Problem)。目前,标准的粒子滤波器选择先验概率(Prior)作为建议分布。
    对于粒子退化现象,采样—重要性重采样方法给出了很好的解决途径。其基本思想就是通过在两次重要性采样之间增加重采样步骤,消除权值较小的样本,并对权值较大的样本复制,降低了计算的复杂度。在o(N)时间复杂度范围内可以已排序的均匀分布序列作重采样处理。
    对重采样(Resampling)处理,新的采样结果放在数组,具体的算法用伪码语言写为如下的形式:
    步骤1:这里必须注意是随机变量的累计概率密度序列。
    步骤2:初始假设,当,  产生一组序列分布。对一个固定的j,分别用逐一比较,一旦,就可以得到一组新的样本集合。如此循环直到。需要说明的是,重采样方法在消除粒子退化问题的
同时,也带来了其它两个问题:首先,降低了粒子运算并行执行的可能性;其次,由于权值较大的粒子多次被选择,粒子的多样性减少。这种情况尤其在小过程噪声条件下表现更为明显[11]
图2  SIR-PF重要性采样与重采样示意图
4  GMSPPF滤波算法
    如前所述,利用序列重要性采样和重采样的方法,粒子滤波可以有效的递归更新后验概率的分布。但是,由于对粒子未加假设,大量的粒子在处理非线性、非高斯问题时出现了计算的高复杂性问题。另外,由于少数权值较大的粒子反复被选择,粒子坍塌明显。文献[4]提出了在重要性采样步骤的建议分布的生成阶段“搬运”粒子到似然较高区域,可以缓解坍塌,同时提高估计的性能。但是不可避免的是对每一个粒子的后验概率处理,使得计算的复杂性进一步加剧。鉴于此种情况,这里介绍一种新颖的高斯混合采样粒子滤波器(Gaussian Mixture Sigma Point  Particle Filter,GMSPPF)。GMSPPF算法利用有限高斯混合模型表征后验概率分布情况,可以通过基于重要性采样的加权的后验粒子,借助于加权的期望最大化算法(Weighted Expection Maximization)替换标准重采样步骤,降低粒子坍塌效应。
 
随机推荐
OECD主要国家软件业发展概况 
现行统计体制和统计制度存在的主要问题及21世纪统计改革的目标模式
中国性别平等与妇女发展评估报告
加强企业统计工作 提高企业管理水平
基于蒙特卡洛方法的高斯混合采样粒子滤波算法研究
从统计学的发展趋势谈统计教育的改革
县乡(镇)统计管理体制模式的理性选择:垂直管理
实现统计全方位电子化
知识型产业的统计和指标
谈新经济环境下企业统计的改革

设为首页 | 关于我们 | 广告联系 | 友情链接 | 版权申明

Copyright 2009-2014 All Right Reserved [粤ICP备05100058号-11]