分享到:
统计学 最近更新
实践美学:数学教学的另一种视角
重力教学论文:八年级物理重力教学方法浅论
论文:中考物理力学有效复习策略
论文:结合中考物理试题特征浅谈力学复习策略
中学物理教学资源挖掘和利用研究的实践与探索
初中数学分层教学论文:数学课堂中实施分层教学的做法
初中物理教学资源的挖掘和利用
中学物理教学过程中激发学生的学习兴趣
中学物理教学激发和培养学习兴趣
论现代农业示范区的规范建设与综合生产能力提升
数学教学过程中要培养学生的情感态度
帮助学生获得数学活动经验浅探
学生几何直观能力的培养
数学教学中的“思”与“问
基于变频器的单相电动机调速装置
毕业论文_暖贴行业的新兴与发展
汞离子对豌豆根尖细胞染色体行为的影响
初中数学教学中如何指导学生“会学”
美国高中物理教材习题设置的启示
议物理教学中科学素质的培养
ADF检验中滞后长度的选择——基于ARIMA(0,1,q)过程的模拟证据

【摘要】在进行ADF检验时如何确定一个最优的滞后长度一直是研究者们关注的问题。最近的研究表明,不同的滞后长度选择方法对ADF检验的统计推断影响很大。本文在已有研究的基础上,模拟了更为一般的ARIMA(0,1,q)过程,分析了在不同的数据生成过程、检验式以及样本容量下,各种滞后长度选择方法对ADF检验功效和实际检验水平的影响,最后认为修正的信息准则通常具有较合理的实际检验水平,而从一般到特殊法具有更为稳健的ADF检验性质。

关键词 ADF检验 滞后长度 信息准则 修正的信息准则 从一般到特殊法

Abstract: The optimal lag length in estimating Augmented Dickey-Fuller statistics have been concentrated on for years. Previous research indicated that different leg length selection models affect a lot on the statistical inference of ADF test. Based on all the researches available, this paper simulates a more general ARIMA(0,1,q) process and analyzes the influence of lag length selection criterions to the size and power of the ADF test with different data generating processes, ADF regressions, and sample sizes. Finally, it is proved that the Modified Information Criteria always shows a more proper size and the General to Special Criteria has more robust properties in ADF test.

Keywords: ADF test Lag Length Information Criteria Modified Information Criteria General to Specific

一、引 言

随着时间序列非平稳问题的提出,单位根检验目前已经成为宏观数据建模前首先要进行的工作。为此,Dickey和Fuller(1979, 1981)[1]提出了著名的ADF检验,并推导了当时间序列yt是ARIMA(p,1,0)过程且满足检验式中滞后差分项长度k ≥ p时ADF检验统计量的极限分布。然而,在实际运用ADF检验时,真实的p是不知道的,因此需要研究者自己确定k。总的来说滞后长度的选择方法主要分为两类。一类是经验法(rule of thumb)。这种方法是研究者任意选择k,或将k表示为样本容量的函数。另外一类就是根据数据来选择k。这种方法主要有Akaike(1973)信息准则(Akaike Information Criteria,以下简写为AIC)、Schwarz(1978)信息准则(Schwarz Information Criteria,以下简写为SIC)、Hannan和Quinn(1979)信息准则(Hannan and Quinn Information Criteria,以下简写为HQIC)、从一般到特殊法则(General to Special Criteria,以下简写为GSC)、从特殊到一般法则(Special to General Criteria,以下简写为SGC)等。此外,在后来的研究中,Weber(1998)又提出了非自相关法则(No Autocorrelation Criteria),即从一个比较简化的模型开始,逐渐增加滞后差分项直到残差不能拒绝非自相关的原假设。2001年他又提出了一种考虑滞后长度k在特定区间[kmin, kmax]内的从特殊到一般法,该方法运用了一系列F检验,确定的最优滞后长度是使得比其大的直到kmax的所有滞后差分项对应参数的联合检验均不显著的最小的k。
然而很多学者都指出,ADF检验的结论对滞后长度k的选择非常敏感。Phillips和Perron(1988)模拟发现当真实数据生成过程为随机游走时,随着检验式中差分项滞后长度的增加,会导致ADF检验的功效和水平都降低。另外,Schwert(1989)、Agiakloglou和Newbold(1992)以及Harris(1992)等也指出不同的滞后长度选择方法对ADF检验的实际水平和功效有明显影响。这就引发了关于不同方法确定滞后长度是否以及如何影响ADF统计量极限分布的讨论。
其实早在ADF检验提出不久,Said和Dickey(1984)就证明了对阶数未知的ARMA过程检验单位根时,只要检验式中的滞后长度k满足一定的上界条件和下界条件,仍可以用ADF统计量来检验原过程中单位根的存在。紧接着,Lewis和Reinsel(1985)提出了一个与Said和Dickey(1984)下界条件等价的条件,并证明当满足该下界条件和Said和Dickey(1984)上界条件时检验式中滞后差分项的参数估计量具有一致性和渐近正态性。Hannan和Deistler(1988)[2]则提出了各信息准则确定一个平稳可逆的ARMA过程滞后长度的若干性质。
随后,Ng和Perron(1995)明确解答了哪些滞后长度选择方法满足这些上界与下界条件,以及运用它们确定滞后长度如何影响ADF检验统计量极限分布的问题。首先,该文讨论了检验式中滞后长度k不满足Said和Dickey(1984)或Lewis和Reinsel(1985)下界条件对ADF检验统计量极限分布的影响。他们认为这时仍渐近服从标准DF分布,同时滞后差分项的参数估计量仍具有一致性,但其向真值收敛的速度要小于 (T为样本容量,下同)。接着,Ng和Perron(1995)将滞后长度的选择准则与上述极限分布条件相比较,证明了在ADF检验中,利用各信息准则确定的滞后长度时不满足下界条件,但统计量仍服从标准DF分布。而当运用GSC时,如果我们确定的滞后长度最大值满足上界条件和Lewis和Reinsel(1985)下界条件,则滞后差分项的参数估计量具有一致性和渐近正态性,可以用t统计量、F统计量和Wald统计量检验其显著性。最后通过模拟重点讨论了当数据生成过程为ARIMA(0,1,1)时各方法确定的滞后长度以及对ADF检验功效和实际检验水平的影响。
类似地,Hall(1994)还从一个纯自相关过程入手,给出了当真实数据生成过程是一个ARIMA(p,1,0)过程时,ADF统计量服从DF分布应满足的假设条件。并讨论了不同滞后长度选择准则对ADF统计量极限分布的影响。他认为当运用AIC、SIC、HQIC以及GSC确定滞后长度时,满足上述条件,因此ADF统计量仍服从标准DF分布,而运用SGC时不能满足上述条件,从而ADF统计量的极限分布发生变化,不再服从标准DF分布。最后对于不同的ARIMA(p,1,0)过程,模拟了基于各种准则的ADF检验功效与实际检验水平。
此外,随着研究的不断深入,学者们又从一些新的角度对滞后长度选择的问题进行了探讨。比如Ng和Perron(2001)将Elliott、Rothenberg、和Stock(1996)[3]以及Dufour和King(1991)[4]提出的局部GLS退势法与Perron和Ng(1996)[5]提出的修正的单位根检验统计量相结合,提出了一系列MGLS统计量来检验单位根。在这种检验中,他们首度运用了一系列修正的信息准则(Modified Information Criteria,以下简写为MIC)来确定滞后长度,并给出了其局部渐近性质。MIC与一般信息准则的本质区别就在于它考虑到检验式中一阶滞后项参数估计量的偏差与滞后长度是高度相关的,进而通过加入一个包含一阶滞后项参数估计量的修正项对信息准则拟和不足的问题进行了一定的校正。Ng和Perron(2005)又重点探讨了在运用各种信息准则时,可用观测值个数(即调整的样本容量)、计算均方误差时的自由度、以及计算惩罚因子(penalty factor)时使用的观测值个数对滞后长度选择的影响。结果表明在有限样本下AIC与SIC选择的滞后长度对上述三个因素非常敏感。
综上所述,已有的研究主要集中在对ARIMA(p,1,0)和ARIMA(0,1,1) 过程进行单位根检验时,各方法确定的滞后长度以及相应的单位根检验的功效与实际水平上。而对ARIMA(0,1,q)即含有单位根的高阶移动平均过程的研究则比较少。另外,也鲜见MIC与其他方法比较的相关研究。针对这些问题,本文对Hall(1994),Ng和Perron(1995, 2001)的方法和结论进行扩展,在接下来的部分中用蒙特卡罗模拟的方法在有限样本下研究一个更一般的ARIMA(0,1,q)过程,对模拟结果中不同滞后期选择方法尤其是MIC的优劣进行比较,以期找到一种能应用在更一般的数据生成过程中,并使ADF检验推断更真实可靠的滞后长度选择方法。最后一部分是对全文的总结,并提出了一些滞后项选择及ADF检验中需要注意的问题。

二、模拟结果

根据Hall(1994),Ng和Perron(1995, 2001)文章中的结论,运用信息准则和GSC确定滞后长度时,ADF统计量仍服从标准DF分布。其中运用GSC时滞后差分项以的速度收敛于真值,从而使ADF检验有一个更优的有限样本性质。MIC是对通常信息准则的修正。因此本文选取AIC、SIC、MAIC、MSIC以及GSC五种方法来确定ADF检验式中的滞后长度。重点考察小样本下当误差项为高阶移动平均过程时基于各准则的ADF检验功效和实际检验水平的特征,以及MIC与其他方法相比对ADF检验统计推断的影响和滞后长度选择的异同。各方法确定滞后长度的原理如下:
首先,AIC与SIC具有相似的形式,选择的滞后长度k满足使(1)式的值最小。其中AIC准则中CT=2,SIC准则中CT=logT,表示估计方程的误差均方,它往往随着滞后长度的增加而下降。是ADF检验式中的解释变量个数,它等于滞后差分项个数k加上常数项以及时间趋势项,会随滞后长度的增加而变大,代表了对过度拟和的惩罚。因此选择k使(1)最小意味着在较少参数和较小的残差平方和之间做出选择。
(1)
另外,Ng和Perron(2001)提出了一系列的修正的信息准则即MIC。其选择的滞后长度是使得目标方程(2)的值最小的k,依据CT的表达式不同MIC又分别称为MAIC与MSIC。
(2)
它与一般的信息准则的不同就是增加了一个修正因子,其表达式为:
(3)
其中是ADF检验式中一阶滞后项的参数估计量。Ng和Perron(2001)证明会随着ADF检验式中滞后差分项个数k的增加而减小,尤其当数据生成过程的移动平均部分含有负根时,这种减小更加明显,因此可以有效地校正一般信息准则拟和不足的问题。
GSC则是在ADF检验式中选取r=j+m个滞后差分项,并通过对最后m个参数 (i=1, …, m)的显著性进行联合检验来完成的,其中j∈[0, jmax]。该检验的Wald形式为:
(4)
其中 (5)
(6)
它代表所有解释变量的方差协方差矩阵,是中右下方m×m阶的块矩阵。
代表该检验式回归函数的误差均方,其中代表回归式的残差。
检验规则为:j从最大的取值jmax开始,依次降低其取值直到(4)式表示的统计量显著。该统计量服从自由度为m的χ2分布。基于显著性水平α,滞后长度k的取值为① k = j +1,当是统计量所有值中第一个大于临界值的值时。② k = 0,当统计量所有值均小于临界值时。
为了考察误差项为高阶移动平均过程时ADF检验中滞后长度的选择问题,我们对形如(7)式的数据生成过程共10种情况运用上述五种方法选择滞后长度继而进行ADF检验。
(7)
其中L是滞后因子,ut是白噪声,y0=0。
10种数据生成过程如下:①θ1=0.8, θ2=0.0, θ3=0.0, θ4=0.0; ②θ1=0.5, θ2=0.0, θ3=0.0, θ4=0.0; ③θ1=-0.5, θ2=0.0, θ3=0.0, θ4=0.0; ④θ1=-0.8, θ2=0.0, θ3=0.0, θ4=0.0; ⑤θ1=0.8, θ2=0.5, θ3=0.0, θ4=0.0; ⑥θ1=0.5, θ2=0.3, θ3=0.0, θ4=0.0; ⑦θ1=-0.5, θ2=0.3, θ3=0.0, θ4=0.0; ⑧θ1=-0.8, θ2=0.5, θ3=0.0, θ4=0.0; ⑨θ1=-0.8, θ2=-0.5, θ3=0.0, θ4=0.0; ⑩θ1=0.5, θ2=0.3, θ3=0.2, θ4=0.1。这10种情况描述了误差项移动平均部分的根在个数、大小、正负等方面的不同情形。
ADF检验的原假设H0: ρ = 1;备择假设H1: ρ < 1。ADF检验式如下:
(a)
(b)
为考察不同情形下ADF检验的功效和实际检验水平,我们对每种数据生成过程分别取β=1、0.95、0.85,用Rats6.2模拟样本容量T=100时基于两种检验式(a)和(b)的上述检验过程以及T=250时基于检验式(a)的上述检验过程。对每种情况重复10000次,计算ADF统计量小于临界值的概率,同时记录每次选择的滞后长度,最后计算滞后长度的均值和标准差。当真实数据生成过程是单位根过程即β = 1时,ADF统计量小于临界值的概率就是犯弃真错误的概率,即实际检验水平。而当真实数据生成过程为平稳过程即β < 1时,ADF统计量小于临界值的概率则是1-犯取伪错误的概率,即检验功效。这里运用GSC确定滞后长度时取m=1,即计算单个参数的t统计量,显著性水平取5%,各准则的最大滞后长度取kmax = 20[6]。
根据模拟结果,我们重点比较了各方法在滞后长度选择及其相应的ADF检验功效和实际检验水平方面的异同,并考察了误差项为高阶移动平均时的各种数据生成过程、不同检验式以及样本容量对滞后长度选择及ADF检验统计推断的影响,从而对Hall(1994),Ng和Perron(1995)的结论做了一定的补充。

随机推荐
朴素贝叶斯分类在入侵检测中的应用
OECD的科技统计与科技指标
谈新经济环境下企业统计的改革
OECD主要国家软件业发展概况
现行统计体制和统计制度存在的主要问题及21世纪统计改革的目标模式
统计数据质量控制问题研究
建构理论统计课堂教学方法初探
中国性别平等与妇女发展评估报告
辽宁可持续发展能力分析
基于蒙特卡洛方法的高斯混合采样粒子滤波算法研究

设为首页 | 关于我们 | 广告联系 | 友情链接 | 版权申明

Copyright 2009-2014 All Right Reserved [粤ICP备05100058号-11]